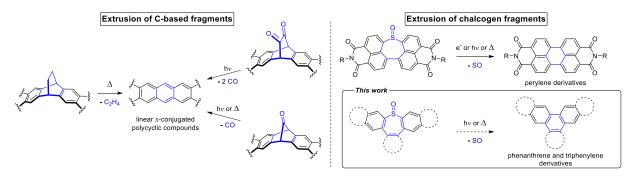
SYNTHESIS OF π -CONJUGATED POLYCYCLIC COMPOUNDS VIA LATE-STAGE CHALCOGEN EXTRUSION



<u>A. Okba,</u>^{a,b} P. Simón Marqués,^a K. Matsuo,^c N. Aratani,^b H. Yamada,^c C. Kammerer^a

^a CEMES, Université de Toulouse, CNRS, F-31055 Toulouse, France
^b Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
^c Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan

The last decades have witnessed increasing interest around organic semiconducting materials as active components of electronic devices.¹ In particular, small-molecule organic materials hold great promise and a variety of π -conjugated polycyclic compounds (π -CPCs) have been shown to exhibit high charge carrier mobility.

The "precursor approach" has proved valuable overcoming stability and solubility issues faced by most of these molecules, which cannot be synthesized *via* in-solution organic chemistry. This approach relies on the synthesis, purification and characterization of soluble precursors of the electronically active target π -CPCs, before their quantitative conversion in the solid state under photoirradiation, thermal activation or electron exchange. Several techniques were reported leaning on the elimination of carbon-based small molecules, such as retro-Diels-Alder and decarbonylation processes, to yield core scaffolds incorporating linearly-fused benzene rings.^{2,3} More recently, the latestage extrusion of chalcogen fragments has emerged as a highly promising tool to access a wider variety of π -conjugated polycyclic structures,⁴ such as perylene derivatives which were obtained *in situ* via the ring contraction of thiepine *S*-oxides.⁵

In this context, we are currently investigating the extension of the "*precursor approach*" to the synthesis of phenanthrene and triphenylene derivatives *via* a thermally- or photoactivated late-stage SO extrusion. Our strategies for the preparation of the soluble thiepine *S*-oxide precursors as well as their reactivity under thermal and photoactivation to yield the target π -CPCs will be presented.

References

- ¹ C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, *Chem. Rev.*, **2012**, 112, 2208-2267.
- ² H. Yamada, D.Kazuhara, M. Suzuki, H. Hayashi, N. Aratani, Bull. Chem. Soc. Jpn., 2020, 93, 1234-1267.
- ³ A. Jancarik, G. Levet, A. Gourdon, *Chem. Eur. J.*, **2019**, 25, 2366-2374.
- ⁴ A. Okba, P. Simón Marqués, K. Matsuo, N. Aratani, H. Yamada, G. Rapenne, C. Kammerer, *Beilstein J. Org. Chem.* **2024**, 20, 287-305.
- ⁵ S. Hayakawa, K. Matsuo, H. Yamada, N. Fukui, H. Shinokubo, *J. Am. Chem. Soc.*, **2020**, 142, 11663-11668.